As reported by EETimes from the European MEMS Summit last month, French research institute CEA-Leti has manufactured accelerometer MEMS devices on 300mm-diameter wafers. This technology is currently being transferred to Tronics Microsystems SA (Grenoble, France), which currently only manufactures on 200mm wafers. Since CEA-Leti has long functioned as the R&D group for STMicroelectronics (ST), and previously led the way for ST to produce MEMS chips on 200mm-diameter wafers, we may expect that 300mm-wafer MEMS processing is now on ST’s internal roadmap.
Moving production to larger wafers makes sense when either the chip-size or the manufacturing volume increase in size. Much of the growth in demand for MEMS is for so-called “combo” sensors that combine multiple sensor technologies, such as CEA-Leti’s piezo-resistive silicon nanowire technology which allows the accelerometer, gyroscope, magnetometer, and pressure sensor capability to be integrated on the same chip.
The compatibility of Leti’s 200mm-developed technologies with 300mm wafer fabrication, “shows a significant opportunity to cut MEMS production costs,” said Leti CEO Marie Semeria in a press release. “This will be especially important with the worldwide expansion of the Internet of Things and continued growing demand for MEMS in mobile devices.” Sensors of all sorts will be needed for all of the different “Things” to be able to capture new useful information, so we may expect that demand for combo MEMS devices will continue to increase.
—E.K.
Ed's Threads
Monthly Archives: September 2015
Silex’ Strategic Acquisition by China
A secretive investment holding company out of Hong Kong named GAE Ltd has acquired 98% of the shares in Silex Microsystems AB (Jarfalla, Sweden). The transaction took place on July 13th of this year when the former major shareholders agreed to sell all of their respective holdings, while Silex founder and CEO Edvard Kalvesten retains 2% of the shares in the company and continues his role as CEO and board member of Silex. No changes are made to the organizational structure or business operations of Silex, while the new owners plan to build a new high-volume manufacturing line near Beijing that clones the equipment and processes in Sweden with first wafers out by mid-2017 (as reported at EETimes).
Silex claims to be the “world’s number one Pure Play MEMS Foundry”, has worked with AMFitzgerald&Assoc. on RocketMEMS shuttle wafers to reduce MEMS development time by 6-12 months, and has developed multiple Through-Silicon Via (TSV) technologies to allow for efficient 3D integration of MEMS and CMOS.
Almost lost as a footnote in the news is that Silex holds IP on lead-zirconium-titanate (PZT) thin-film technology that allows for efficient piezo-electric energy-harvesting chips. MicroGen Systems is currently in the market with aluminum-nitride (AlN) piezo-cantilever micro-power generator system to power IoT nodes by scavenging either single-frequency or multi-frequency vibrations, working with X-Fab in Germany as foundry partner. If PZT-based piezo-cantilever energy harvesters can compete with AlN-based devices then the former could constitute much of the product volume in the new Silex Beijing fab. In 2014, Yole Developpement forecast “the integration of IoT-dedicated electronic components to result in a market volume of 2B units for these devices by 2021;” if 30% will use energy harvesting then this represents 600M units globally.
—E.K.
- No items
Archive
- 2018 August
- 2017 October
- 2017 June
- 2017 April
- 2017 March
- 2017 February
- 2017 January
- 2016 November
- 2016 October
- 2016 September
- 2016 August
- 2016 July
- 2016 June
- 2016 May
- 2016 April
- 2016 March
- 2016 February
- 2016 January
- 2015 December
- 2015 November
- 2015 October
- 2015 September
- 2015 August
- 2015 July
- 2015 June
- 2015 May
- 2015 April
- 2015 February
- 2015 January
- 2014 December
- 2014 November
- 2014 October
- 2014 August
- 2014 July
- 2014 May