Tag Archives: ConFab

MEMS Mirrors for LIDAR

Clever integration of new microelectronic/nanoelectronic technologies will continue to provide increased functionalities for modern products. Light Imaging, Detection, And Ranging (LIDAR) technology uses lasers to see though fog and darkness, and smaller less expensive LIDAR systems are needed for autonomous driving applications now being developed by dozens of major companies around the world. A significant step in the right direction has been taken by the US government’s Lawrence Livermore National Laboratory (LLNL) after working with AMFitzgerald on a MEMS mirror Light-field Directing Array (LDA) prototype.

In-process photo of the Light-field Directing Array (LDA) MEMS prototype designed by Lawrence Livermore National Laboratory. (Source: AMFitzgerald & Assoc.)

In-process photo of the Light-field Directing Array (LDA) MEMS prototype designed by Lawrence Livermore National Laboratory. (Source: AMFitzgerald & Assoc.)

For the past several years, AMFitzgerald has been developing the fabrication process for a novel MEMS micro-mirror array designed by Dr. Robert Panas’s research group at LLNL, as shown in this video. The technology has been developed specifically to serve LIDAR, laser communications, and other demanding applications where existing MEMS mirror array technologies are insufficient. The novel design offers exceptional speed and tilt range, with three axes (tip-tilt-piston), feedback control, and 99% fill factor. The technology is available for license from the LLNL Industrial Partnerships Office.

At the upcoming MEMS & Sensors Technical Congress, on May 11, Dr. Carolyn D. White will present a case study on how she developed this complex prototype and leveraged AMFitzgerald’s ecosystem of partners to integrate specialty processes. Dr. Alissa Fitzgerald—founder and principle of AMFitzgerald leading the development of innovative MEMS and sensor solutions for specialty applications—will be giving a keynote address on “Next Generation MEMS Manufacturing” at 9:10am May 17 during The ConFab. Dr. Fitzgerald has unparalleled expertise in how to best design MEMS for different fab lines, and is a speaker not to be missed.

—E.K.

Eloquent Executives Ecosystem Expositions

#cmc,#confab,#namedropping

With dimensional scaling reaching economic limits, each company in the IC fab industry must rely upon trusted connections with customers and suppliers to know which way to go, and the only way to gain trusted connections is through attending live events. Fortunately, whether you are an executive, and engineer, or an investor, there is at least one must-attend event happening these days to keep you informed.

We should always start with SEMI (sponsor of SemiMD, personal friends for many years) who has always represented the gold standard for trade-shows, executive events, and manufacturing symposia around the world. I attended my first SEMICON/West in 1988, and have since attended excellent SEMICONs in Europe, Japan, Korea, China, and Singapore. This year’s SEMICON gathering in San Francisco will feature a nearly 50% increase in the number of technical sessions.

SEMI ran another excellent Advanced Semiconductor Manufacturing Conference (ASMC) in Albany this month, featuring keynotes by visionaries such as “Nanoscale III-V CMOS” by MIT Professor Jesus A. del Alamo. The panel discussion “Moore’s Law Wall vs. Moore’s Wallet, and where do we grow from here,” was moderated by industry veteran Paul Werbaneth, now with Intevac. It is clear that we will reach economic limits of scaling well before the physical limits.

Materials technology and supply-chain solutions to extend economic limits were discussed by Intel’s VP of Technology and Manufacturing Tim Hendry in a keynote at the Critical Materials Conference (CMC) held this year in Oregon in early May, as produced by Techcet CA (I am also an analyst with Techcet and co-chair of this event, while Solid State Technology was a media sponsor). David Thompson, Senior Director, Center of Excellence in Chemistry, Applied Materials showed that despite the inherent “Agony in New Material Introductions – minimizing and correlating variabilities” is possible with improved collaboration throughout the supply-chain.

The Imec Technology Forum in Brussells this month (Solid State Technology was a media sponsor) could best be described with Lake Wobegone hyperbole that all the women were strong, the men were good-looking, and everyone was above average. The big news is imec acquiring iMinds for greater synergies when integrating the latter’s algorithms with imec-ecosystem hardware for application-specific solutions. Gary Patton, now CTO and SVP of Global R&D for GLOBALFOUNDRIES, reminded everyone at ITF of the inherent speed constraints of the copper wires and low-k dielectrics needed to connect IC transistors, “As I’ve often said, It’s like you have a Ferrari but you’re towing a boat if you don’t address the interconnect delay issues.” Regardless, Patton confidently declares that, “We will continue to provide value to our customers to be able to create new products, and we will innovate in ways other than simple scaling.”

At ITF, a video was shown of imec president Luc van den Hove interviewing Gordon Moore at his beachfront home in Hawaii. Moore has always been humble and claims no special ability to forecast trends. “It would not surprise me if we reached the end of scaling in the next decade,” said Moore. “I missed the importance of the PC, and I missed the importance of the internet. Predicting the future is a difficult job and I leave it to someone else.”

Wally Rhines seemed able to predict the future when he eloquent expounded upon Moore’s Law as a special-case learning-curve in his presentation at ITF. Rhines will provide one of the keynote addresses at the ConFab in Las Vegas this year (Solid State Technology’s home event, co-sponsored by SEMI and by IEEE-CPMT). Executives from the global industry will gather to hear insights and analysis on the challenges facing all companies in the ecosystem, as we search for profitable pathways in a more complex landscape.

—E.K.

Moore’s Law is Dead – (Part 4) Why?

We forgot Moore merely meant that IC performance would always improve (Part 4 of 4)

IC marketing must convince customers to design ICs into electronic products. In 1965, when Gordon Moore first told the world that IC component counts would double in each new product generation, the main competition for ICs was discrete chips. Moore needed a marketing tool to convince early customers to commit to using ICs, and the best measure of an IC was simply the component count. When Moore updated his “Law” in 1975 (see Part 1 of this series for more details), ICs had clearly won the battle with discretes for logic and memory functions, but most designs still had only single-digit thousands of transistors so increases in the raw counts still conveyed the idea of better chips.

MooresLaw_1965_graphFor almost 50 years, “Moore’s Law” doubling of component counts was a reasonable proxy for better ICs. Also, if we look at Moore’s original graph from 1965 (right), we see that for a given manufacturing technology generation there is a minimal cost/component at a certain component count. “What`s driven the industry is lower cost,” said Moore in 1997. “The cost of electronics has gone down over a million-fold in this time period, probably ten million-fold, actually. While these other things are important, to me the cost is what has made the technology pervasive.”

Fast forward to today, and we have millions of transistors working in combinations of “standard cell” blocks of pre-defined functionalities at low cost. Graphics Processor Units (GPU) and other Application Specific Integrated Circuits (ASIC) take advantage of billions of components to provide powerful functionalities at low cost. Better ICs today are measured not by mere component counts, but by performance metrics such as graphics rendering speed or FLOPS.

The limits of lithography (detailed in Part 2 of this blog series) mean that further density improvements will be progressively more expensive, and the atomic limits of physical reality (detailed in Part 3) impose a hard-stop on density at ~1000x of today’s leading-edge ICs. “If we say we can`t improve the density anymore because we run up against all these limitations, then we lose that factor and we`re left with increasing the die size,” said Moore in 1997.

Since the cost of an IC is proportional to the die size, and since the cost/area of lithographic patterning is not decreasing with tighter design-rules, increasing the die size will almost certainly increase cost proportionally. We may not need larger dice with more transistors, however, as future markets for ICs may be better served by the same number of transistors integrated with new functionalities.

International R&D center IMEC knows as well as any organization the challenges of pushing lithography and junction-formation and ohmic contacts to atomic limits. In the 2014 Imec Technology Forum, held the first week of June in Brussels, president and chief executive officer Luc Van den hove’s keynote address focused on the applications of ICs into communications, energy, health-care, security, and transportation applications.

TI has been making ICs since they were co-invented by Kilby in 1959, and over a decade ago TI made a conscious decision to stop chasing ever-smaller digital. First it outsourced digital chip fabrication to foundries, and in 2012 began retiring digital communications chips. Without continually shrinking components, how has TI managed to survive? By focusing on design and integration of analog components, in the most recent financial quarter the company posted 58% gross margin on $3.29B in sales.

At The ConFab last month, Dr. Gary Patton, vice president, semiconductor research and development center at IBM, said there is a bright future in microelectronics (as documented at Pete’s Posts blog).

The commercial semiconductor manufacturing industry will see only continued revenue growth in the future. We will process more area of silicon ICs each year, in support of shipping an ever increasing number of chips worldwide. More fabs will be built needing more tools and an increasing number of new materials.

Moreover, next generation chips will be faster or smaller or cheaper or more functional, and so will better serve the needs of new downstream customers. ASICs and 3D heterogeneous chip stacks will create new IC product categories leading to new market opportunities. Personalized health care could be the next revolution in information technologies, requiring far more sensors and communications and memory and logic chips. With a billion components, the possibilities for new designs to create new IC functionalities seems endless.

However, we are past the era when the next chips will be simultaneously faster and smaller and cheaper and more functional. We have to accept the end of Dennard Scaling and the economic limits of optical lithography. Still, we should remember what Gordon Moore meant in 1965 when he first talked about the future of IC manufacturing, because one factor remains the same:

The next generation of commercial IC chips will be better.

Past posts in the blog series:

Moore’s Law is Dead – (Part 1) What defines the end.

Moore’s Law is Dead – (Part 2) When we reach economic limits,

Moore’s Law is Dead – (Part 3) Where we reach atomic limits.

Future posts in this blog will ruminate about new materials, designs, and technologies for next 50 years of IC manufacturing.

E.K.